
Proceedings of the 2007 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY, 20-22 June 2007

A Linux Implementation of Temporal Access Controls

Ken Chiang, Thuy D. Nguyen, Cynthia E. Irvine

Abstract— Control of access to information based upon
temporal attributes can add another dimension to access
control. To demonstrate the feasibility of operating system-
level support for temporal access controls, the Time Interval
File Protection System (TIFPS), a prototype of the Time In-
terval Access Control (TIAC) model, has been implemented
by modifying Linux extended attributes to include temporal
metadata associated both with files and users. The Linux
Security Module was used to provide hooks for temporal ac-
cess control logic. In addition, a set of utilities was modified
to be TIFPS-aware. These tools permit users to view and
manage the temporal attributes associated with their files
and directories. Functional, performance, and concurrency
testing were conducted. The ability of TIFPS to grant or
revoke access in the future, as well to limit access to specific
time intervals enhances traditional information control and
sharing.

I. Introduction

In many situations, access to information should not be
perpetual. For example, limited temporal availability could
be applied to items ranging from student exams to medical
prescriptions. Exams should be available to students dur-
ing a pre-determined exam period, whereas prescriptions
might only be valid for a few weeks or months after they
have been written. Current access control systems do not
provide a conceptually simple and complete mechanism for
modulating access of subjects to files based upon temporal
attributes: a start time when access is allowed and a stop
time when access is revoked.

Afinidad formally modeled temporal access control in the
Time Interval Access Control (TIAC) model [1], [2]. To un-
derstand the practical design implications of such a system,
a prototype implementation of the TIAC model has been
developed for the Linux operating system. The Time Inter-
val File Protection System (TIFPS) consists of a modified
Linux Security Module that implements the TIAC access
control logic [3]. Extended attributes are used to associate
temporal metadata with files and directories. To demon-
strate the usability of TIFPS at the application level, a
number of file management utilities were modified to take
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advantage of the temporal access control mechanism. Our
initial implementation requires the administrator to set
temporal attributes on executables, viz. the login shell,
and objects prior to user access to the system. Implementa-
tion of temporal access control mechanisms in the operating
system offers several advantages: a consistent and coherent
abstraction presented to all applications; an encapsulated
mechanism; and protection of the mechanism from arbi-
trary modification by applications. The TIFPS prototype
adds another layer of protection against unauthorized ac-
cess to files and directories, and serves as a starting point
for experimentation in temporal access control systems.

II. Background

This section briefly reviews related work in temporal ac-
cess controls contrasting it with the TIAC model. Possi-
ble implementations of TIAC are discussed and features of
Linux relevant to a TIAC implementation are presented.

A. Time Interval Access Control (TIAC) Model

Authorization models using temporal constraints or tem-
poral attributes have been proposed previously. Bertino et
al. described a model [4], [5] that associated temporal con-
straints with access authorizations and models temporal
dependencies among authorizations. The notion of asso-
ciating temporal constraints with authorizations was ex-
tended in an access control model that supported discon-
tinuous temporal constraints on authorizations [6]. Role-
Based Access Control (RBAC) has also been extended to
support temporal constraints to the activation and deacti-
vation of roles [7]. Alturi and Gal [8], [9] proposed a model
somewhat more closely related to TIAC: access control con-
straints are based on temporal attributes associated with
the data as well the time of the data access request.

None of the authorization models mentioned above sup-
port policies based on temporal attributes associated with
both subjects (e.g., a process representing the user) and
objects (e.g., data). Seminal work [10], [11], [12] has mod-
eled authorizations for subjects’ to access to objects using
an access matrix or tabular form. In particular, Graham
and Denning [10] described how the access matrix was de-
rived from the 3-tuple of subjects, objects, and a set of
allowed modes of access. The TIAC model [1], [2] extends
this approach by adding time as a decision variable.

Using interval algebra [13], the TIAC model associates
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temporal attributes with subject and object entities and
describes access authorizations in terms of access graphs.
The TIAC formal semantics is unambiguous and provides
the ability to precisely decide when a subject with a given
set of temporal attributes has permission to access an ob-
ject, which is also endowed with temporal attributes. Since
the model requires only three time intervals: those associ-
ated with subject and object, and the time interval during
which access is requested, TIAC-based access policies can
be checked for consistency using decidable algorithms [1].

To demonstrate the feasibility of constructing a fine-
grained temporal access control system based on the TIAC
model, a prototype was designed that utilized a combina-
tion of hardware and software, the Time Interval Memory
Protection System (TIMPS) [14].

TIMPS employs the TIAC logic to control memory ac-
cess at the page level.

The access control mechanism was logically divided into
an initial authorization phase, an ongoing access phase, and
a termination phase. For the ongoing phase, the use of
hardware in combination with software offered some perfor-
mance benefit; however, an implementation based entirely
in software is both more flexible and practical.

To gauge the performance impact of TIAC, we first con-
sidered implementing TIMPS entirely in software. It was
quickly realized that such an implementation is impractical
due to the page-level granularity that would be imposed.
In particular, if temporal access controls are based on pages
and the higher-level controlled entities are not page aligned,
then the access control mechanism would hinder system
functionality.

The software implementation of the TIAC model de-
scribed here controls access at the file-level, where file or
regular file refers to a regular file in a mounted file system;
it does not include pipes, sockets, devices, etc. Linux was
chosen as the target system for our TIAC implementation.

B. Linux File Management

The Linux kernel implements a Virtual File System
(VFS) [15][16] that allows different file systems to coexist
and interoperate, and enables a homogeneous set of high-
level file operations.

To allow additional management and control over file ac-
cesses, Linux Kernel Versions 2.6 and later implement Ex-
tended Attributes for most file systems. These extended
attributes take the form of < name, value > pairs, and
are associated and stored permanently with files. These
attributes provide a consistent means to extend file sys-
tem capabilities while maintaining the independence of the
underlying file system implementation. In this work, the
extended security attributes supported in the Linux 2.6.15
kernel were used to add a single set of temporal attributes
to files and directories.

In the TIFPS prototype, attributes are set by the ad-

ministrator, i.e. the root user, and runtime logic prop-
agates attributes in support of the access control policy.
Files and directories lacking temporal attributes are treated
as if temporal access is permitted at all times. A simple
command-line utility facilitates administrative control over
temporal attributes associated with files and directories.
The utility also permits normal users to view temporal at-
tributes, while additional options allow administrators to
modify those attributes. To provide user-level TIFPS sup-
port, additional command-line utilities have been adapted
to be TIFPS-aware.

III. Design and Implementation of TIFPS

Starting with requirements, this section describes the de-
sign and implementation of the Time Interval File Protec-
tion System (TIFPS) and noteworthy aspects of the im-
plementation. We conclude with a short description of a
number of Linux command line utilities that have been
made TIFPS-aware.

A. Kernel Support for TIFPS

To ensure that the TIFPS implementation provided a co-
herent set of functions, a set of objectives was established.

Deny 
Access

Grant 
Access

Does user have necessary 
read, write, or execute 

permissions?

Tstart =< Tcurr < Tend
and

Fstart =< Tcurr < Fend
?

Hardware
ClockUser logs in, subject 

inherits Tstart and 
Tend as preset by 

administrator

Subject requests 
access to object 

with attributes Fstart 
and Fend

Get current time, 
Tcurr, from hardware 

clock

No

No Yes

Yes

Fig. 1. High-level flow logic for TIFPS access control.

• Existing access control policies will be supplemented by
temporal access controls such that access is granted only if
all policy checks succeed.
• The prototype will not apply temporal access controls to
objects that have not been assigned temporal attributes.
• For all objects with temporal access attributes, the ker-
nel will mediate temporal access to those objects based on
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those attributes. All forms of access will be mediated, viz.
read, write, and execute.
• For the TIFPS prototype, only the administrator, i.e.,
the super user, may modify the temporal attributes asso-
ciated with objects.
• When the time of access expires, access revocation should
take place to at least one second precision.
• For operations that could result in the creation of copies
of temporally controlled information, the destination files
must take on the most restrictive temporal attributes of
any files read by the copying process.
• The administrator will be able to set time-of-allowed ac-
cess for subjects, i.e. user accounts, and objects, i.e. regu-
lar files and directories.

A high-level view of the logic for TIFPS access control
decisions is illustrated in Figure 1. When a user logs into a
TIFPS-enabled system, the login shell inherits the tempo-
ral attributes Tstart and Tend specified in advance by the
administrator. Fstart and Fend define the time interval of
allowed access for a particular object. For pre-existing files,
the system administrator specifies in advance the temporal
attributes Fstart and Fend for those objects that require
temporal access control.

Invocation of executables via the shell results in the
process inheriting the temporal attributes of its parent.
When a process (subject) attempts to access a file and af-
ter the standard Linux read, write, execute permissions are
checked, the system checks the current time Tcurr against
the temporal attributes Tstart and Tend. If current time is
within the time interval specified by Tstart and Tend, then
the objects’s time attributes are checked. If the current
time falls within the time interval, Fstart and Fend, speci-
fied for the object, then access is granted. Thus, access is
granted in TIFPS only if the following is true:

Tstart ≤ tcurr < Tend and Fstart ≤ tcurr < Fend

To prevent unauthorized extension of access to informa-
tion by copying, when read access to an object is requested
in TIFPS, the process’s temporal attributes are updated
to take on the intersection of the temporal attributes of
the object being read and the process’s current temporal
attributes. This is illustrated in Figure 2. After a program
reads objects with temporal attributes F1−start, F1−end and
F2−start, F2−end, any write operation to new or existing ob-
jects will transfer the most restrictive time attributes asso-
ciated with any of the objects read to the objects written.

To support temporal access control on subjects, as de-
fined by the TIAC model [1][2], temporal attributes for the
first process (subject) of a user session are initialized by
copying the rights on the login directory to the subject.
The administrator is authorized to grant and revoke time-
based access to users by applying temporal attributes to
home directories. When the user logs in, the process exe-
cuting on his behalf inherits the attributes of the directory.

By ensuring that each child process inherits the tempo-
ral attributes of its parent, temporal access control can be
imposed on all subjects created during a user’s session.

Subject S

File 1

File 2

Destination File

S reads File 1

S reads File 2

S writes to Destination File

F_1-start F_1-end

F_2-start F_2-end

Fig. 2. TIFPS read and write policy.

A.1 Implementation considerations

In Linux, time is represented by a 4-byte signed integer,
which specifies the number of seconds since the start of the
Unix epoch. A negative integer represents the number of
seconds before the Unix epoch. Since, for TIFPS, times
prior to 1970 are irrelevant, the TIFPS extended attribute
has a value range of 0x00000000 to 0x7FFFFFFF, i.e., from
1 January 1970 at 00:00:00 UTC to the year 2038, which
we call TUnix0 and TUnixINF , respectively.

Extended attributes are used for persistent storage
of the TIFPS temporal attributes for objects and are
stored as strings. The string representation of the name
of the extended attribute for TIFPS is “security.tifps”.
The value of the extended attribute has the format
“:0x00000000:0x7FFFFFFF\0”, where the first hexadeci-
mal number represents Fstart and the second hexadecimal
number represents Fend. Storing temporal attributes in
this format simplifies string parsing during access control
operations.

“Ext3”, a popular journaling file system that is installed
by default and supports extended attributes [17] was chosen
for the TIFPS prototype. However, to the extent possible,
the prototype was kept sufficiently generic to support other
extended attribute file systems, such as “ext2” and “xfs”.

To avoid implementing temporal access control either in-
side the kernel or with custom security hooks, an existing
framework was needed. The Fedora Core 5 (FC5) distribu-
tion includes the Linux Security Module (LSM), a modular
security framework that provides kernel-callable security
hooks [18]. These generic security hooks can be used to
implement different security policies.

Two other Linux security frameworks were considered.
Rule Set Based Access Control (RSBAC) [19], unlike LSM,
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does not require that the security hook functions be ex-
ported to user-space programs. Another is Grsecurity [20].
It is a multi-layered, detection, prevention, and contain-
ment framework for Linux security. Despite the enhanced
security features of RSBAC and Grsecurity, LSM was cho-
sen for the TIFPS implementation because of its stability
and broad acceptance. Since TIFPS addresses only files
and directories, a subset of the LSM security hooks was
sufficient.

In addition to LSM, VMware Server 1.0.0 was used both
to host a dedicated Subversion 1.3.0-4.2 [21] versioning
server, and for target kernel development and testing. Fe-
dora Core 5 - Kernel 2.6.15 [22], the target operating sys-
tem, was reduced to the minimum number of kernel mod-
ules and drivers required to run the system. The kernel
configuration file is available in the prototype source [3].
Source Insight 3.5 [23] and Emacs 21.4-14 supported ker-
nel source code inspection and modification.

To use LSM, the init() and exit() functions had to
be defined. The security operations structure was used to
implement custom security functions for each of the secu-
rity hooks [3]. Since default security hooks have no effect,
it was sufficient to implement only the security hook func-
tions necessary to achieve the desired system behavior.

In the Linux kernel, task struct contains metadata on
processes and inodes contain metadata on files, directories,
and other file system objects. The Linux Security Mod-
ule predefines in each of these data structures a security
object pointer to a security structure that is custom de-
fined for the specific LSM implementation. In the TIFPS
LSM implementation, the security structure defined for
processes is named tifps task security struct and has the
following fields: a 4-byte back pointer to the task struct,
a semaphore data structure used for synchronization, and
two signed integers representing Tstart and Tend for al-
lowed access by the process. The inode security structure
is named tifps inode security struct and has the following
fields: 4-byte back pointer to the inode struct, a semaphore
data structure, and two signed integers representing Fstart

and Fend for allowed access to the object represented by
the inode structure [3].

A.2 Implementation details

On system initialization, with TIFPS LSM loaded, the
kernel allocates a tifps task security struct for the cur-
rent running process, initializes the semaphore struct,
and sets the TIFPS start and end times to TUnix0 and
TUnixINF , respectively. Subsequent tasks are also allocated
a tifps task security struct. Figure 3 depicts the low-level
time policy enforcement logic.

Preliminary analysis shows that the restrictive policy
with respect to time intervals introduces a problem. Con-
sider an example: Assume that a user reads a file that
expires 5 minutes after the user has logged into the sys-

Hardware
clock

Update the subject time attributes with 
intersection of subject and object time intervals

Get current time

Deny access

Grant  access

Is subject 
root?

Read request?

Is current time 
within subject's 
time interval?

Is current time 
within object's 
time interval?

Subject requests file/directory read/write access

Update the object time attributes with 
intersection of subject and object time intervals

Write request?

Yes No

No

No

No

Yes

Yes

Yes

Yes

No

Fig. 3. Flow chart of low-level TIFPS enforcement logic.

tem. After reading the file, then, due to the inheritance
of temporal attributes, the process’s time-of-allowed access
also expires in 5 minutes. So, after 5 minutes, the task will
not be allowed to access any other files.

One modification of the policy that was considered but
not implemented is described here. Since the intent is
to preserve the temporal attributes on information, the
tifps task security struct could be implemented to “keep
track of” (as opposed to inherit) the most restrictive tem-
poral attributes based on the intersection of previously ac-
cessed objects’ attributes. Only during an attempt to write
would the system enforce access control and transfer the
temporal attribute with the most restrictive time interval
to the objects being written. This work-around was not im-
plemented because the file read operation implies a write
operation to the kernel stack, and thus the same problem
would persist.

For the purpose of the current prototype, the fork-and-
exec paradigm of Unix-based operating systems obviates
the problem. When a user logs into a Unix system, that
user’s login shell runs as a process. Execution of a program
by the shell starts with a fork() invocation which clones the
parent, thus creating the child process. An exec() within
the child process replaces the executable of the child so
that the intended new process runs. Hence, it is the child
process that actually executes the command, reading from,
and writing to files. Thus the temporal attributes of the
parent login shell are not affected.

Also, an implementation-specific choice was also made
with respect to attribute inheritance. When creating a new
process via a fork, which clones the “parent” process, the
security task alloc() security hook function is called from
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the copy process() kernel function. Since the attributes
copied to the child are those that the parent had when
the parent was created, this meant that the forked “child”
inherited the temporal attributes of its “grandparent”. To
ensure that “child” processes inherited the temporal at-
tributes of their “parents” at the time of child process cre-
ation, the parent attributes are used to determine the child
process’s temporal attributes.

To prevent increasingly restrictive access as directo-
ries dynamically inherit temporal attributes, the current
TIFPS prototype sets the temporal attributes of directories
upon their creation or through explicit administrative mod-
ification operations and does not dynamically update them.
This prevents the most restrictive temporal attributes of
any user accessing it to be applied to a shared directory
such as /tmp.

The TIFPS policy and permission check logic were imple-
mented in the tifps enforcer() function in the helper func-
tions section of the tifps hooks.c source code file. The file
is divided into two sections, one implementing the secu-
rity hook functions called by the kernel as part of LSM,
and another implementing all the helper functions that the
security hook functions call to provide temporal access con-
trol.

Although TIFPS was designed as a loadable module for
the Linux Kernel, the kernel configuration utilities were
modified to compile TIFPS as either a loadable module or
as an in situ kernel module. Compatibility with other secu-
rity modules such as NSA’s SELinux [24] or BSD’s Secure
Level LSM has not been considered or tested.

B. TIFPS-Aware Command-Line Tools

To provide an interface to the temporal attributes asso-
ciated with files and directories, a new tool modtime, was
developed to meet the following objectives:
• Relative time will be with respect to current time, Tcurr.
(Note that internally the system enforces its temporal pol-
icy based upon absolute time, e.g., on November 5, 2007
at 1700 hours revoke access to parliament.txt)
• Temporal attributes will be set by specifying them in
either absolute time or relative time.
• The administrative interface will be easy to use; it will
not require complicated time calculations by the adminis-
trator.
• The tool will be able to take multiple arguments to
change or display the temporal attributes of multiple files
and directories at once.
• Usage instructions will be made readily available.
• The tool will display useful error messages to interactive
users.
• The tool will allow the temporal attributes of files and
directories to be easily viewed.

Fedora Core 5 as well as other Linux operating systems
running Linux 2.6 and up include a set of user-space pro-

grams for setting and getting extended attributes: set-
fattr() and getfattr(), respectively. Setfattr can only be
run by the administrator account, whereas getfattr can be
run by any user. The modtime command was designed as
a wrapper program that encompassed these. The modtime
tool presents standard Linux command line tool syntax and
semantics. A man page describing its usage was written
[3].

The following existing command-line functions were
modified to be TIFPS aware: mkdir, rmdir, touch, chmod,
ls, stat, file, find, rm. Neither mv nor ln required modi-
fication to become TIFPS-aware, and testing of these two
utilities showed that they were constrained by the under-
lying temporal controls. Man pages for the TIFPS-aware
utilities were modified to reflect their new capabilities.

IV. Testing and Analysis

Test plans for validating TIFPS for correct functional-
ity, measuring its performance overhead, and gauging its
robustness in multi-user situations were developed.

A. Functional Tests

Functional testing was conducted to ensure that the ac-
cess control mechanism of TIFPS LSM enforced the poli-
cies as expected. Both static and dynamic testing were
performed. The static tests included experiments to ob-
serve:
• Enforcement of temporal policies for reading, writing,
and executing files and directories, where “execution” has
the standard Linux semantics,
• Inheritance of temporal attributes in file and directory
creation operations and in file-copy operations,
• Possible corrupted file format information due to incom-
plete writes resulting from access revocation. (Note that
directory writes are not a problem, as these are atomic with
respect to the access checks.)

The static tests for explicit file and directory creation
resulted in expected temporal attribute inheritance behav-
ior.

A set of copy tests was devised to ensure that information
copied from one object to another would have the most
restrictive combination of attributes of the pair. Figure 4
illustrates three scenarios and the expected inherited time
interval for the created file is shown. For each of the three
scenarios, three ways to copy files in Linux were tested: the
cp command, redirection, and pipes. The tests using pipes
had unexpected results and will be discussed in IV-A.1.

Tests were created to examine the behavior of the system
when access to a file is revoked during a write operation.
The results showed that file corruption could occur if access
is revoked while an application is writing state information
to a file.

Dynamic attribute modification tests were designed to
observe the behavior of the system when temporal at-
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Subject

Source
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Subject

Source

Destination

Expected

Subject

Source

Destination

Expected

Scenario 1

Scenario 2

Scenario 3

Fig. 4. File copy scenarios.

tributes are changed by an administrator during a user
session. Two sets of scripts were developed: one to ex-
amine the effect of subject attribute modification and the
other to determine the impact of object attribute modi-
fication. System behavior from the subject (i.e., user)’s
perspective was recorded before and after the change by
the administrator.

As expected, dynamic modification of the subject’s tem-
poral attributes did not affect the subject’s continued ac-
cess to files and directories; the subject inherits temporal
attributes at the time of login, and modification of subject
attributes does not take effect until the next login. In con-
trast, dynamic modification of object attributes is effective
immediately and results in successful revocation of access
upon expiration of its allowed temporal interval.

A.1 Analysis

Two unresolved problems were encountered during static
testing. In addition, access revocation during file write
presented a problem.

To ensure that the system consistently enforced the in-
heritance policy for copied information, multiple ways of
copying files in a Linux system were tested. The system
behaved as expected except when pipes were used to copy
files. In this case tee read from standard input and sent the
bytes read to two streams: standard output and a specified
destination file. Since tee reads from the pipe and, in this
implmentation, the pipe does not have temporal attributes
(see II-A), the sequence of commands illustrated in Figure
5 successfully copies the contents of source.txt into desti-
nation.txt without preserving the temporal attributes of
source.txt.

In Linux, inode data structures are associated with pipes.
Thus, they can be assigned temporal attributes. This form
of copying can be separated into the following individual

cat teeSource txt

bash

Destination txt

bash with temporal attributes forks 
and children inherit attributes

stdout stdin

pipe

cat source.txt |tee destination.txt

Fig. 5. Use of tee to copy files.

operations, where the parenthesized actions indicate antic-
ipated TIFPS attribute inheritance:
1. cat reads from source.txt (cat inherits attributes from
source.txt)
2. cat writes to the pipe (pipe inherits attributes from cat)
3. tee reads from the pipe (tee inherits attributes from
pipe)
4. tee writes to destination.txt (destination.txt inherits at-
tributes from tee)

Within our test environment, we determined that the se-
quence does not necessarily occur in the order given above.
For example, on some occasions, the kernel scheduler was
observed to schedule step 3 first, and the tee process will
block until the cat process writes data to the pipe. Since
the LSM security hook is called when the tee process re-
quests read permission to the pipe and not after it wakes
from blocking, the temporal attributes of the original file
will not be correctly inherited. A solution to this problem
will require further investigation.

The second problem was encountered when using the
tab-completion feature of the bash shell. This feature al-
lows a user to list all executables available in his/her path
and when used by the login bash shell, all the executables
in a user’s path are read. Consequently the shell inherits
the most restrictive temporal attributes of all the executa-
bles. Additional examination of attribute inheritance by
executables is needed to solve this problem and is relegated
to future work.

Finally, the TIFPS LSM does not provide transactional
support for file writes. Hence, if file state information has
not been written prior to access expiration, the file’s state
could be inconsistent. Again, further investigation is re-
quired to determine a solution. One solution is to support
file system recovery in the kernel.

B. Performance Tests

Performance testing measured the additional overhead
incurred by TIFPS LSM temporal access checks compared
those for an unmodified kernel. The added overhead for
TIFPS access control is approximately 5% for read oper-
ations, 20% for write operations, and 9% for copy opera-
tions.

To perform the tests, a set of scripts was created to time
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Read Write Copy
Single-file Multi-file Single-file Multi-file Single-file Multi-file

Kernel
Attr No attr Attr No attr Attr No attr Attr No attr Attr No attr Attr No attr

Normal - ave 4.41 4.39 4.47 4.40 26.77 26.56 27.58 27.05 6.50 6.42 6.71 6.85
TIFPS - ave 4.65 4.59 4.72 4.65 32.28 31.91 32.59 32.20 7.09 7.09 7.25 7.40
Difference 5.44% 4.55% 5.51% 5.68% 20.6% 20.1% 18.16% 19.06% 9.13% 10.44% 8.05% 7.98%

TABLE I

TIFPS Performance Test Summary (units are in seconds)

the reading, writing, and copying of files on an unmodified
2.6.15 kernel and the same kernel loaded with the TIFPS
LSM. The two kernels were guest operating systems on
a machine running virtualized VMware server images of
Fedora Core 5. The hardware running the VMware image
has an Intel Pentium 4 processor running at 3.00 GHz. The
RAM allocated for the image is 256M.

Two additional factors were considered: the intrinsic
overhead associated with TIFPS-enabled entities; and per-
formance variations between repeated actions on the same
file and similar actions on different files. It was hypothe-
sized that differences in data structure allocation and ini-
tialization might affect performance.

The results in Table I suggest that, contrary to hypoth-
esis, the presence of TIFPS attributes did not significantly
affect the performance. The reason for this result could be
that most of the performance overhead of TIFPS occurs
in the setup of the function calls to the TIFPS security
hook implementations. In the TIFPS security hook imple-
mentations, access control logic is skipped in the absence of
TIFPS attributes. It appears that skipping sections of code
within a security hook function call did not significantly
reduce performance overhead. Further experimentation is
needed to localize the cause of performance overhead in
TIFPS.

C. Concurrency Tests

Concurrency tests were performed to gauge the robust-
ness of the TIFPS LSM in situations where multiple sub-
jects with different temporal attributes request access to
the same objects. Three user accounts were created, each
with different temporal attributes. Four tests were per-
formed.
1. When three subjects acting on behalf of their respective
users attempted to continuously read the same file, it was
found that the revocation time for read access for each
subject corresponded to the time that the corresponding
user’s time attributes expired.
2. Three subjects attempted to continuously write to the
same text file. When a subject’s write access was revoked,
the revocation time was recorded. In this case, the file cor-
rectly inherited the TIFPS permissions of the user whose
temporal attributes are the most restrictive. At file expira-
tion, the write access was properly revoked for all subjects.

3. When copying files to their home directories, each of the
subjects’ copies of the file inherited the temporal attributes
associated with the individual user.
4. When subjects attempt to concurrently copy private
files into a shared directory, it was found that each user’s
respective temporal attributes were preserved as expected.
The shared directory retained its original temporal at-
tributes as expected.

V. Discussion and Future Work

The benefits of TIFPS include kernel-level protection of
the mechanism as well as consistent policy enforcement
across all applications. TIFPS enforces proper inheritance
of temporal attributes by subjects and objects for copy op-
erations. This feature results in a tension between correct
security behavior and the availability of system services.

To enforce proper inheritance in a temporal access con-
trol system, a policy similar to the High Watermark [12]
should be implemented: a subject’s level of access becomes
increasingly restrictive as the subject accesses various ob-
jects. As a consequence, enforcement of this policy may
result in the association of increasingly restrictive tempo-
ral attributes with a subject during the course of a session.

For a typical Linux shell, this problem is mitigated by
the fork-and-exec paradigm. Since the child process incurs
the increasing restrictions as various objects are accessed,
the parent is unaffected. A new child process will inherit
the original less restrictive attributes of the parent shell.
However, the fork-and-exec paradigm introduces additional
issues. For example, inheritance of temporal attributes was
not consistently enforced in the copy operation performed
using pipes to communicate information between sibling
processes within the system. Therefore, future implemen-
tations should explicitly address the intended semantics of
the file system to ensure that object and subject temporal
attributes are preserved.

Our future work on temporal access controls includes
enhancements to both the TIAC model and to the TIFPS
implementation.

TIAC:
• Explore the implementation of TIAC in a distributed en-
vironment. This must include consideration of a reliable
global clock.
• Extend the TIAC model to support a temporal attribute
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inheritance policy that can be formally checked for consis-
tency and reasonable semantics.

TIFPS:
• Examine the Linux fork-and-exec functionality to ensure
proper policy enforcement when attributes are inherited by
new processes. Related to this topic is the issue raised by
the case of bash auto-completion for executables.
• Support times beyond the year 2038.
• Modify the implementation to include other file systems
that support extended attributes, in addition to “ext3”.
• Investigate write operations to ensure consistent file state
upon temporal attribute expiration.
• A new form of temporal attribute could be created for
TIFPS that could be used to modulate access periodically.
For example, access to certain files might be permitted only
between 8 AM and 5 PM.
• Support a higher degree of granularity for temporal at-
tributes. For example read, write, and execute operations
could each have separate temporal attributes.
• Consideration to the semantics of write() will be required
since some file systems, e.g. AFS [25], use delayed writes
and access could expire prior to a close(), which would force
another write.

At the application level, the modtime tool could be ex-
tended to support recursive directory descent. In addition,
further investigation of tools and APIs for use in TIAC-
enabled systems will enhance utilization of temporal access
control systems.

In summary, temporal access control systems can aug-
ment traditional access control mechanisms to support
dynamic security services by changing access permissions
based upon time. The capability of such a system to grant
or revoke access in the future, as well to limit access to
a specific time interval can provide another dimension for
information control and sharing not available in traditional
access control systems. The Linux-based TIFPS prototype
implementation presented here can be used as a starting
point for future temporal access control systems.
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